

EU Research and Innovation in Support of the Earth Observation Market

21-22 September 2016 Brussels

Urban Sprawl in Latin American Metropolitan Areas (Bogota, Quito and Lima) – Derivation of socioeconomic data

Dr. Rainer Malmberg

Industrieanlagen Beriebsgesellschaft mbH, Germany

Background: The Project

Monitoring Urbanization in Latin American Metropolitan Areas

... a project focusing on preparation of demonstration cases for Urban Mapping

within the context of

financed by ESA (ESRIN/AO/1-7663/13/I-AM)

key users

Service design, preparation & analysis

Background: The World Bank Project

Monitoring Urbanization in Latin American Metropolitan Areas

Main objectives:

- Development of a time & cost efficient process for urban structure analysis
- The capability of Earth Observation as suitable basis for baseline mapping, urban planning and monitoring
- Establish standard procedure to create
 comparable results on a global level
 (Urban Atlas classification)
- Historical analysis of urban sprawl in order to derive urban growth patterns.
- Detection of potential hotspots for urban risks
- Derivation of socioeconomic data for transportation planning

Advantages

- Different fabric often represent different characteristics of living/ use fragmentation
- Different density separates areas of similar fabric
- Identifying urban density is a fast & cost effective way of identifying mixed areas without footprint allocation
- Density of housing can be analysed according to its change over time
- Combination of Fabric + Density allows estimation of population (other input: known absolute numbers or spatial resolution of income or ...)
- It works all over the World

Limitation

• Formal/ Informal structures relate to image texture (small features, often crowded)

Bogota

Continuous medium dense urban fabric

Discontinuous dense urban fabric

Source: SPOT6, ESRI Basemap; Google street view

Bogota

Discontinuous medium dense urban fabric

Discontinuous sparse urban fabric

Informal settlement

Source: ESRI Basemap; Google street view

Bogota

Urban Baseline Services

Transportation network 2013

- fast transit road, Other road; Railroad
- all roads wider 10m (buffering in 3m intervals)

Urban Service 2013 and 2000

- Urban Atlas Standard (minimum mapping unit 0,25/ 1ha)
- geometry compatible to Google Maps/ ESRI Basemap
- thematic accuracy > 96 %... cities Lima, Quito & Bogota: 71,800 polygons
- Backdating approach:(1) mapping 2013; (2) mapping 2000 (considering 2013)
- 18 urban classes, 5 other classes

Urban Services

Transportation network 2013

- fast transit road, Other road; Railroad
- all roads wider 10m (buffering in 3m intervals)

 Urban Atlas Standard (minimum mapping unit 0,25/ 1ha)

⇒ Urban Change Layer

- detailed change types
- grouped into main change characteristics

- low and high vegetation
- minimum mapping unit 0,1ha
- significant single trees

Terrain Analysis

- considering Urban Mapping Service(s)
- Risk identification, calculation of natural drainage flow ...

Comparability of Metropolitan regions

Urban Atlas

- 1.1.1.1. Continuous dense urban fabric
- 1.1.1.2. Continuous medium dense urban fabric
- 1.1.2.1. Discontinuous dense urban fabric
 1.1.2.2. Discontinuous medium dense urban fabric
- 1.1.2.3. Discontinuous sparse urban fabric
- 1.1.3. Informal transition
- 1.1.4. Informal settlement
- 1.2.1. Industrial and Commercial
- 1.2.1.3. Public and Private
- 1.2.2.1. Fast transit road
- 1.2.2.2. Other road ■ 1.2.2.3. - Railway

- 1.2.3. Port area
- 1.2.4. Airport
- 1.3.1. Mineral extraction and dump site
- 1.3.3. Construction sites
- 1.4.1. Green urban areas
- 1.4.2. Sports and leisure facilities
- 2.1. Acriculture and natural vegetation
- 2.2. Bare ground
- 3. Forest
- 5.1. Inland water
- 5.2. Marine water

comparable due to

- similar dates
- similar nomenclature Urban Atlas (applied standard)
- easy to combine with other sources
- · administrative units

limitations

- subset definition → often related to administrative units
- Suggestion: core area & buffer approach, considering administrative units

Bogota - Urban Area ⇔ Area with significant change eoworld arth December 1 to Decembe

Bogota - Urban Area ⇔ Area with significant change

example Bogota

- urban core (up-to-date, draft classification)
- EOworld2 subset for mapping
 Mapping result 2013 (Urban only)
- calculation of buffer area (relative to absolute size of city):

 $r(buffer) = 0.25 \sqrt{A(core)}$

+ administrative Units:

map & analyse areas under severe change

Terrain Information for urban analysis and planning eoworld Earth Oscervation for Development

Terrain analysis (risk identification) Climate change effects

Automatic computation of natural drainage based

extraction of drainage lines

drainage lines and potential flooding areas

Terrain analysis (risk identification)- potential flooding zones

Slope map suburban Lima – potential landslide areas

Slope map suburban Lima – potential landslide areas

Relation of geospatial and socioeconomic data

Statistic interpretation

- Link to local available socioeconomic data
 - Population density
 - Employment
 - Income situation
 - Age structure
 - Level of education
 -
- Benefit
 - Information of the spatial distribution of population in case of emergency response
 - Input for urban transport network planning
 - Information for planning commercial centres or Industry
 - Information for insurance sector
 - Information for planning of recreation areas in urban areas (green and blue space)
 - Information for education sector
 - •

Population density – transporting the message

Population density

based on Urban Mapping Service

and some sort of population/ commercial information (often of different kind, but can in general be transformed to suitable information for modeling)

< 1,000
< 1,500
< 3,000
< 5,000
< 15,000
< 30,000
< 50,000
> 50,000

Population/km² < 500

population estimation day-time

night-time

Derivation of 3D Information for the estimation of inhabitants

3D point cloud from Spot 6 stereo data

Age class below 5 years (source: INEI of 2013)

Age class below 5 – 24 years (source: INEI of 2013)

Age class below 25 - 39 years (source: INEI of 2013)

Age class below 40 - 64 years (source: INEI of 2013)

Age class 65 years and olde (source: INEI of 2013)

Background: The World Bank Project

Main benefits:

- Standardized process for urban mapping and analyze in midscale level for data scare areas
- The retrospective view give us useful information of urban growth patterns
- Cost & time efficient way to derive geospatial information about the urban structure
- Link to socioeconomic data data fusion
- Detection of hotspot areas for natural hazards (vulnerability)
- Important input to make the urban area more resilient

Background: The World Bank Project

Monitoring Urbanization in Latin American Metropolitan Areas

Main aspects of using EO information

"It is mandatory to **understand the users processes** and daily work"

"The real benefit of EO is to **provide information** derived from different sources, **tailored for the users business processes**"

Thank you for your attention

IABG mbH

Dr. Rainer Malmberg

Business Development

Einsteinstraße 20 D-85503 Ottobrunn Germany

Tel +49 89 6088 2823

Fax +49 351 8923 2355

E-Mail malmberg@iabg.de

Web www.iabg.de

Dr. Jörg Schaefer

Head of the department

Einsteinstraße 20 D-85503 Ottobrunn Germany

Tel +49 89 6088 2399

Fax +49 351 8923 2355

E-Mail schaeferj@iabg.de

Web www.iabg.de

