

Deutsche Akkreditierungsstelle GmbH

Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV

Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition

The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory

Industrieanlagen-Betriebsgesellschaft mbH (IABG) Betriebsfestigkeitslabor (IBL) Einsteinstraße 20, 85521 Ottobrunn

at the locations:

Berlin,

13.05.2022

Einsteinstraße 20, 85521 Ottobrunn Zum Windkanal 17, 01109 Dresden

is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:

Hardness tests on metallic materials and plastics; metallographic examinations of metallic materials; Evaluation of the adhesion behavior of coatings; surface tests on components; mechanical-technological tests on metallic materials and plastics, fatigue tests on material samples and components; vibration testing and earthquake simulation; climatic tests on components;

mechanical strength and function tests on components of railway vehicles and construction machinery; Manual and mechanical non-destructive tests (penetrant, magnetic particle and visual inspection) on components, fiber-reinforced materials, plastics and composites

The accreditation certificate shall only apply in connection with the notice of accreditation of 13.05.2022 with the accreditation number D-PL-12001-02. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 11 pages.

Registration number of the certificate: D-PL-12001-02-00

Ralf Egner

Head of Department

Translation issued:Dr.-Ing. Tobias Poeste21.06.2023Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de/en/accredited-bodies-search.html.

This document is a translation. The definitive version is the original German accreditation certificate. See notes overleaf.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkkS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf.

No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkkS.

The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelleG) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council setting out the requirements for accreditation and market surveillance relating to the marketing of products. DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC). The signatories to these agreements recognise each other's accreditations.

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org

IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Accreditation Certificate D-PL-12001-02-00 according to DIN EN ISO/IEC 17025:2018

 Valid from:
 13.05.2022

 Date of issue:
 21.06.2023

Holder of accreditation certificate:

Industrieanlagen-Betriebsgesellschaft mit beschränkter Haftung Betriebsfestigkeitslabor (IBL) Einsteinstraße 20, 85521 Ottobrunn

at the locations:

Einsteinstraße 20, 85521 Ottobrunn Zum Windkanal 17, 01109 Dresden

The testing laboratory meets the minimal requirements of DIN EN ISO/IEC 17025:2018 and, if applicable, additional legal and normative requirements, including those in relevant sectoral schemes, in order to carry out the conformity assessment activities listed below. The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and confirm generally with the principles of DIN EN ISO 9001.

Hardness tests on metallic materials and plastics; metallographic examinations of metallic materials; Evaluation of the adhesion behavior of coatings; surface tests on components; mechanical-technological tests on metallic materials and plastics, fatigue tests on material samples and components; vibration testing and earthquake simulation; climatic tests on components; mechanical strength and function tests on components of railway vehicles and construction machinery; Manual and mechanical non-destructive tests (penetrant, magnetic particle and visual inspection) on components, fiber-reinforced materials, plastics and composites

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Within the given testing field marked with *, the testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, the free choice of standard or equivalent testing methods. The listed testing methods are exemplary.

Within the scope of accreditation marked with ***, the testing laboratory is permitted, without being required to inform and obtain prior approval from DAkkS, to use standards or equivalent testing methods listed here with different issue dates.

The testing laboratory maintains a current list of all test-ng methods within the flexible scope of accreditation.

The following test procedures are only carried out at *Einsteinstraße 20, 85521 Ottobrunn*:

DIN EN ISO 6506-1 2015-02	Metallic materials - Brinell hardness test - Part 1: Test method
ASTM E 10 2018	Standard Test Method for Brinell Hardness of Metallic Materials
DIN EN ISO 6507-1 2018-07	Metallic materials - Vickers hardness test - Part 1: Test method
ASTM E 384 2017	Standard Test Method for Microindentation Hardness of Materials
DIN EN ISO 6508-1 2016-12	Metallic materials - Rockwell hardness test - Part 1: Test method (here: <i>scala C</i>)
ASTM E 18 2019	Standard Test Methods for Rockwell Hardness of Metallic Materials
DIN ISO 7619-1 2012-02	Rubber, vulcanized or thermoplastic - Determination of indentation hardness - Part 1: Durometer method (Shore hardness)
DIN EN ISO 868 2003-10	Plastics and ebonite - Determination of indentation hardness by means of a durometer (Shore hardness)
DIN EN ISO 2639 2003-04	Steels - Determination and verification of the depth of carburized and hardened cases

1 Determining the hardness of metallic materials and plastics using hardness testing methods *

DIN EN ISO 3887	Steels - Determination of the depth of decarburization.
2018-05	(here: <i>Chapter 5.3 - Method for measuring microhardness</i>)
DIN EN 10328 2005-04	Iron and steel - Determination of the conventional depth of hardening after surface heating
DIN EN ISO 9015-1	Destructive tests on welds in metallic materials - Hardness testing –
2011-05	Part 1: Hardness test on arc welded joints
DIN EN ISO 9015-2	Destructive tests on welds in metallic materials - Hardness testing –
2016-10	Part 2: Microhardness testing of welded joints
DIN 50190-3 1979-03	Hardness depth of heat-treated parts - Determination of the effective depth of hardening after nitriding
DIN 50190-4 1999-09	Hardness depth of heat-treated parts - Part 4: Determination of the fusion hardening depth and the fusion depth
DIN ISO 48	Rubber, vulcanized or thermoplastic - Determination of hardness
2016-09	(hardness between 10 IRHD and 100 IRHD)

2 Metallographic test methods

2.1 Determination of non-metallic inclusions (steel cleanliness) in steels using light microscopy *

DIN EN 10247 2017-09	Micrographic examination of the non-metallic inclusion content of steels using standard pictures
ASTM E 45 2013	Standard Test Methods for Determining the Inclusion Content of Steel

2.2 Determination of the apparent ferrite or austenite grain size of steels (determination of the average grain size) using microphotographic methods *

DIN EN ISO 643 2013-05	Steels - Micrographic determination of the apparent grain size
ASTM E 112 2013	Standard Test Methods for Determining Average Grain Size

2.3 Other metallographic test methods ***

DIN EN ISO 3887	Steels - Determination of the depth of decarburization.
2018-05	(here: <i>Chapter 5.2 - Metallographic methods)</i>
DIN EN ISO 945-1 2010-09	Microstructure of cast irons - Part 1: Graphite classification by visual analysis
DIN EN ISO 1463	Metallic and oxide coatings - Measurement of coating thickness -
2004-08	Microscopical method
SEP 1520 1998-09	Microscopic examination of carbide structure in steels by means of diangram series
SEP 1615	Microscopic and Macroscopic Test for the image orderedCarbide
1975-01	Distribution of High Speed Steels

3 Adhesion behavior of coatings

3.1 Evaluation of the degree of blistering ***

DIN EN ISO 4628-2	Paints and varnishes - Evaluation of degradation of coatings -Designation
2016-07	of quantity and size of defects, and of intensity of uniform changes in
	appearance - Part 2: Assessment of degree of blistering

3.2 Evaluation of the degree of rusting of coatings on steel by comparison with pictures *

DIN EN ISO 4628-3 2016-07	Paints and varnishes - Evaluation of degradation of coatings -Designation of quantity and size of defects, and of intensity of uniform changes in appearance - Part 3: Assessment of degree of rusting
ASTM D 610	Standard Practice for Evaluating Degree of Rusting on Painted Steel
2008	Surfaces

3.3 Further tests on the adhesion behavior of coatings ***

DIN EN ISO 2409 2013-06	Paints and varnishes –Cross-cut test
ASTM D 3359 2017	Standard Test Methods for Rating Adhesion by Tape Test

4	Surface inspection	of components using impression methods (replica technology) *
DIN 54 1977-0		Non destructive testing; impression methods for surface examination (Replica-technique) (withdrawn standard)
ISO 309 1998-0		Non-destructive testing. Metallographic replica techniques of surface examination.
5	Mechanical-techno	logical tests
5.1		e quasi-static properties of metallic materials, plastics and plastic rent temperatures using Tensile, compression and shear tests *
DIN EN 2017-02	ISO 6892-1 2	Metallic materials - tensile testing - Part 1: method of test at room temperature (here: <i>method B</i>)
DIN EN 2011-0	ISO 6892-2 5	Metallic materials - tensile testing - Part 2: method of test at elevated temperature
DIN EN 2015-0	ISO 6892-3 7	Metallic materials - tensile testing - Part 3: method of test at low temperature
ASTM [2013	3518	Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a +/- 45o Laminate

ASTM D 3039 Standard test method for tensile properties of polymer matrix composite materials

5.2 Determination of material parameters under oscillating stress on metallic materials and components using fatigue tests *

DIN 50100 2016-12	Load controlled fatigue testing - Execution and evaluation of cyclic tests at constant load amplitudes on metallic specimens and components
ASTM E 466	Standard Practice for Conducting Force Controlled Constant Amplitude
2021	Axial Fatigue Tests of Metallic Materials

	Determination of the vibration and earthquake resistance of plants and systems in the fields of energy, automotive, aviation, rail and medical technology using vibration tests *	
IEEE 6 2018	93	Recommended Practice for Seismic Design of Substations
ANSI/ 2004	EEE 344	Recommended Practice for Seismic Qualification for Class 1E Equipment for Nuclear Power Generating Stations
ANSI/ 2006	EEE 382	Standard for Qualification of Safety-Related Actuators for Nuclear Power Generating Stations (withdrawn document)
KTA 22 2012-2		Design of Nuclear Power Plants against Seismic Events; Part 4: Components
KTA 3: 2015-:		Electrical Drive Mechanisms of the Safety System in Nuclear Power Plants (here: sections 10-17)
DIN EI 2008-:	N 60068-2-6 10	Environmental testing - Part 2-6: Tests - Test Fc: Vibration (sinusoidal)
DIN EN 2015-:	N 60068-2-57 10	Environmental testing - Part 2-57: Tests –Test Ff: Vibration - Time-history and sine-beat method
DIN EI 2009-0	N 60068-2-64 04	Environmental testing - Part 2-64: Tests -Test Fh: Vibration, broadband random and guidance (withdrawn document)
DIN Ef 2016-(N 300019-2-3 07	Environmental Engineering (EE) - Environmental conditions and environmental tests for telecommunications equipment - Part 2-3: Specification of environmental tests; Stationary use at weatherprotected locations
DIN EI 2016-(N 300019-2-4 07	Environmental engineering (ee) - environmental conditions and environmental tests for telecommunications equipment - Part 2-4_ specification of environmental tests; stationary use at non-weather protected locations
DIN EN 1995-:	N 60255-21-3 11	Electrical relays - Part 21: vibration, shock, bump and seismic tests on measuring relays and protection equipment; section 3: seismic tests

IEC 60980 1989-06	Recommended practices for seismic qualification of electrical equipment of the safety system for nuclear generating stations (withdrawn document)
DIN EN 61373 2011-04	Railway applications - Rolling stock equipment - Shock and vibration tests.
DIN EN 61587-2 2012-06	Mechanical structures for electronic equipment - Tests for IEC 60917 and IEC 60297 - Part 2: Seismic tests for cabinets and racks.
DIN EN 62271-207 2013-02	High-voltage switchgear and controlgear - Part 207: Seismic qualification for gas-insulated switchgear assemblies for rated voltages above 52 kV
DIN EN 1998-1 2010-12	Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings.
GR-63-CORE NEBS 2012-04	Network Equipment-Building System Requirements: Physical Protection
IEC TS 62271-210 2013	High-voltage switchgear and controlgear - Part 210: Seismic qualification for metal enclosed and solid-insulation enclosed switchgear and controlgear assemblies for rated voltages above 1 kV and up to and including 52 kV
ICC-ES AC156 2015-05	Acceptance criteria for seismic certification by shake-table testing of nonstructural components
RCC-E 2016	Design and construction rules for electrical equipment of PWR nuclear islands (Restriction: <i>seismic vibration testing only</i>)
IEC/TR 62271-300 2006	High-voltage switchgear and controlgear - Part 300: Seismic qualification of alternating current circuit-breakers (Restriction: <i>only seismic vibration tests</i>)
IEC/IEEE 60780-323 2016-04	IEC/IEEE International Standard - Nuclear facilities - Electrical equipment important to safety - Qualification
STANAG 4370 2014-09	ENVIRONMENTAL TESTING AECTP-400: Mechanical environmental tests - Method 401: Vibration (Restriction: only seismic vibration tests) (withdrawn document)

7	Climatic tests ***	
DIN EI 2008-	N 60068-2-1 01	Environmental testing - Part 2-1: Tests - Test A: Cold
DIN EI 2008-	N 60068-2-2 05	Environmental testing - Part 2-2: Tests - Test B: Dry heat
DIN EI 2010-	N 60068-2-14 04	Environmental testing - Part 2-14: Tests - Test N: Change of temperature (here: Na and Nb testing)
DIN EI 2006-	N 60068-2-30 06	Environmental testing - Part 2-30: Tests - Test Db: Damp heat, cyclic (12 h + 12 h cycle)
DIN EI 2010-	N 60068-2-38 06	Environmental testing - Part 2-38: Tests - Test Z/AD: Composite temperature/humidity cyclic test
DIN EI 2014-	N 60068-2-78 02	Environmental testing - Part 2-78: Tests - Test Cab: Damp heat, steady state
ISO 16 2010-	5750-4 04	Road vehicles - Environmental conditions and testing for electrical and electronic equipment - Part 4: Climatic loads
RTCA 2010	DO-160 G	Radio Technical Commission for Aeronautics Environmental Conditions and Test Procedure for Airborne Equipement (here: Section 4.5.1 to 4.5.5 - Temperature and Attitude Section 5 - Temperature Variation Section 6 - Humidity)

The following test procedures are only carried out at *Zum Windkanal 17, 01109 Dresden*:

8 Non-destructive testing ***

8.1 Penetrant testing

DIN EN ISO 3452-1 2014-09	Non-destructive testing - Penetrant testing - Part 1: General principles (here: only point 8)
DIN EN ISO 3452-5 2009-04	Non-destructive testing - Penetrant testing - Part 5: Penetrant testing at temperatures higher than 50 °C
DIN EN ISO 3452-6 2009-04	Non-destructive testing - Penetrant testing - Part 6: Penetrant testing at temperatures lower than 10 °C
DIN EN 1371-1 2012-02	Founding - Liquid penetrant testing - Part 1: Sand, gravity die and low pressure die castings
DIN EN 1371-2 2015-04	Founding - Liquid penetrant testing - Part 2: Investment castings
DIN EN 10228-2 2016-10	Non-destructive testing of steel forgings - Part 2: Penetrant testing

8.2 Magnetic particle inspection

DIN EN ISO 9934-1 2017-03	Non-destructive testing - Magnetic particle testing - Part 1: General principles (here: only points 7 to 14)
DIN EN 1369 2013-01	Founding - Magnetic particle testing
DIN EN 10228-1 2016-10	Non-destructive testing of steel forgings - Part 1: Magnetic particle inspection
DIN EN ISO 17638 2017-03	Non-destructive testing of welds - Magnetic particle testing

8.3 Visual	inspection
------------	------------

DIN EN 13018 2016-06	Non-destructive testing - Visual testing - General principles (here: only points 5 and 6)
DIN EN ISO 17637 2017-04	Non-destructive testing of welds - Visual testing of fusion-welded joints
9 Mechanical strength	and function tests on components of railway vehicles * **
DIN EN 16019 2014-06	Railway applications - Automatic coupler - Performance requirements, specific interface geometry and test method
DIN EN 12663-1 2015-03	Railway applications - Structural requirements of railway vehicle bodies - Part 1: Locomotives and passenger rolling stock (and alternative method for freight wagons)
DIN EN 13749 2021-05	Railway applications - Wheelsets and bogies - Method of specifying the structural requirements of bogie frames
UIC 510-3 1994-07	Wagons - Strength testing of 2 and 3-axle bogies on test rig
UIC 515-4 1993-01	Passenger rolling stock - Trailer bogies - Running gear - Bogie frame structure strength tests
UIC 566 1990-01	Loadings of coach bodies and their components
UIC 615-4 2003-02	Motive power units - Bogies and running gear - Bogie frame structure strength tests
APTA-PR-CS-S-034- 99 2006-06	Standard for the Design and Construction of Passenger Railroad Rolling Stock
DIN EN 12082 2021-09	Railway applications - Axleboxes - Performance testing

10	Mechanical strength and functional tests on components of railway vehicles and construction	
	machinery (qualification tests)	

TAS5-PV-01	Implementation of qualification tests on components in the railway and
22.06.2021	construction machinery sector

Abbreviations used:

AECTP	Allied Environmental Conditions and Test Publication
ΑΡΤΑ	American Public Transportation Association
ANSI	American National Standards Institution
ASTM	American Society for Testing and Materials
DIN	Deutsches Institut für Normung e.V. – German institute for standardization
EN	European Standard
GR	Generic Requirements
NEBS	Network Equipment Building Systems
ICC-ES AC	International Code Council Evaluation Service Acceptance Criteria
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
ISO	International Organization for Standardization
KTA	Nuclear Technical Committee
RCC-E	Règles de conception et de construction des matériels des chaudières
	électronucléaires
RTCA	Radio Technical Commission for Aeronautics
SEP	Steel-iron test sheets from the German Ironworks Association
STANAG	Standardization Agreement
	(Standardization agreement of the NATO contracting states on the use of standardized
	procedures or similar equipment. The STANAG guidelines are supported by the NATO
	Standardization
TAS5-PV-xx	In-house procedures of the conformity assessment body
UIC	Union internationale des chemins de fer